A Characterization of Hard-threshold Boolean Functions
نویسنده
چکیده
This paper characterizes a class of boolean functions, designated of hard-threshold type, in terms of their action on the underlying space graph.
منابع مشابه
on the Geometric Separability of Boolean Functions
We investigate the complexity of the MEMBERSHIP problem for some geometrically deened classes of Boolean functions, i.e., the complexity of deciding whether a Boolean function given in DNF belongs to the class. We give a general argument implying that this problem is co-NP-hard for any class having some rather benign closure properties. Applying this result we show that the MEMBERSHIP problem i...
متن کاملCharacterizing short-term stability for Boolean networks over any distribution of transfer functions
We present a characterization of short-term stability of Kauffman's NK (random) Boolean networks under arbitrary distributions of transfer functions. Given such a Boolean network where each transfer function is drawn from the same distribution, we present a formula that determines whether short-term chaos (damage spreading) will happen. Our main technical tool which enables the formal proof of ...
متن کاملApproximation Resistance and Linear Threshold Functions
In the boolean Max− k−CSP (f) problem we are given a predicate f : {−1, 1}k → {0, 1}, a set of variables, and local constraints of the form f(x1, ..., xk), where each xi is either a variable or negated variable. The goal is to assign values to variables as to maximize the fraction of constraints which evaluate to 1. Many such problems are NP-Hard to solve exactly, and some are even NPHard to ap...
متن کاملON THE FUZZY SET THEORY AND AGGREGATION FUNCTIONS: HISTORY AND SOME RECENT ADVANCES
Several fuzzy connectives, including those proposed by Lotfi Zadeh, can be seen as linear extensions of the Boolean connectives from the scale ${0,1}$ into the scale $[0,1]$. We discuss these extensions, in particular, we focus on the dualities arising from the Boolean dualities. These dualities allow to transfer the results from some particular class of extended Boolean functions, e.g., from c...
متن کاملPolynomial Threshold Functions, AC^0 Functions, and Spectral Norms
We study the class of polynomial threshold functions using harmonic analysis and apply the results to derive lower bounds related to ACo functions. A Boolean function is polynomial threshold if it can be represented as a sign function of a sparse polynomial (one that consists of a polynomial number of terms). Our main result is that the class of polynomial threshold functions can be characteriz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Complex Systems
دوره 11 شماره
صفحات -
تاریخ انتشار 1997